More regressions stuff!

Econ 140, Section 4

Jonathan Old

Roadmap

1. Omitted Variable Bias
2. Bad Controls
3. Quadratic Terms
4. Interaction terms

Any questions?

... The midterm is getting closer: Now is the time for clarifying questions!

Omitted Variable Bias

Recap: OVB (Very important!)

We can summarize everything of OVB in three equations. Let Y_{i} be the outcome variable, X_{i} our regressor of interest, and Z_{i} the "omitted" variable.

$$
\begin{aligned}
\text { [Long regression] } & Y_{i}=c_{1}+\beta_{L} X_{i}+\delta z_{i}+e_{i} \\
\text { [Short regression] } & Y_{i}=c_{2}+\beta_{s} X_{i}+u_{i} \\
\text { [Auxiliary regression] } & z_{i}=c_{3}+\gamma X_{i}+v_{i}
\end{aligned}
$$

Then, the Omitted variable bias formula states that:

$$
\underbrace{\beta_{S}}_{\text {Short }}=\underbrace{\beta_{L}}_{\text {Long }+}+\underbrace{\delta}_{\text {Omitted } \times} \cdot \underbrace{\gamma}_{\text {Included }}
$$

We call $\delta \gamma$ the omitted variable bias. We can appraise the direction of the bias by multiplying our guesses for the signs of δ and γ. If either $\delta=0$ or $\gamma=0$, then OVB is zero!

Regression: Basics, Interpretation, Quadratic Terms

See in Datahub: OVB example, OVB visualized

Bad Controls

Control variables

Control variables are additional variables (or covariates) included in a regression. We do this for various reasons (in decreasing order of importance):

- To remove selection bias / omitted variable bias
- To increase precision of our estimates
- To know about the (conditional/partial) correlation of other variables
- To better predict the outcome

Let's see graphically how control variables work! Datahub

Bad controls

- Some controls are called "bad controls". These are:

1. Variables that are themselves outcomes of a treatment: What happens if you control for the change in English test scores in the regression below?
2. Variables that moderate the treatment effect, e.g. controlling for occupation choice in gender wage gap regression...

- Rule of Thumb: Good controls are either pre-determined or immutable characteristics.
- Another way to think about it: Controls help us make "apples to apples" comparisons. Which apples matter?

Quadratic Terms

Making OLS more interesting

- We can extend the simple OLS framework

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+e_{i}
$$

to something richer:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+e_{i}
$$

- All questions of the type "how is Y_{i} expected to change if we change X_{i} ", keeping all other variables in the regression fixed can be solved with partial derivatives - in this case:

$$
\frac{\partial Y_{i}}{\partial X_{i}}=
$$

Making OLS more interesting

- We can extend the simple OLS framework

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+e_{i}
$$

to something richer:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+e_{i}
$$

- All questions of the type "how is Y_{i} expected to change if we change X_{i} ", keeping all other variables in the regression fixed can be solved with partial derivatives - in this case:

$$
\frac{\partial Y_{i}}{\partial X_{i}}=\beta_{1}+2 \cdot \beta_{2} \cdot X_{i}
$$

Example for Quadratic Terms

Let's see how to use quadratic terms on Datahub

Interaction terms

Interaction terms: Making OLS more interesting

Let us consider the model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+e_{i}
$$

where Y_{i} is a country's GDP per capita, $X_{1 i}$ the value of its natural resources, and $X_{2 i}$ a measure of how democratic it is.

1. How do we interpret β_{1} ?

Interaction terms: Making OLS more interesting

Let us consider the model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+e_{i}
$$

where Y_{i} is a country's GDP per capita, $X_{1 i}$ the value of its natural resources, and $X_{2 i}$ a measure of how democratic it is.

1. How do we interpret β_{1} ?

Keeping democracy fixed, increasing the value of a country's natural resources by one unit is associated with β_{1} higher GDP per capita.
2. How do we interpret β_{2} ?

Interaction terms: Making OLS more interesting

Let us consider the model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+e_{i}
$$

where Y_{i} is a country's GDP per capita, $X_{1 i}$ the value of its natural resources, and $X_{2 i}$ a measure of how democratic it is.

1. How do we interpret β_{1} ?

Keeping democracy fixed, increasing the value of a country's natural resources by one unit is associated with β_{1} higher GDP per capita.
2. How do we interpret β_{2} ?

Keeping natural resources fixed, increasing a country's democracy score by one unit is associated with β_{2} higher GDP per capita.

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ?

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ? $\beta_{1}+\beta_{3} X_{2 i}$

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ? $\beta_{1}+\beta_{3} X_{2 i}$
2. How do we interpret β_{1} ?

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ? $\beta_{1}+\beta_{3} X_{2 i}$
2. How do we interpret β_{1} ? The effect of an additional unit of $X_{1 i}$, if $X_{2 i}$ is equal to 0 .

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ? $\beta_{1}+\beta_{3} X_{2 i}$
2. How do we interpret β_{1} ? The effect of an additional unit of $X_{1 i}$, if $X_{2 i}$ is equal to 0 .
3. How do we interpret β_{2} ?

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ? $\beta_{1}+\beta_{3} X_{2 i}$
2. How do we interpret β_{1} ? The effect of an additional unit of $X_{1 i}$, if $X_{2 i}$ is equal to 0 .
3. How do we interpret β_{2} ? The effect of an additional unit of $X_{2 i}$, if $X_{1 i}$ is equal to 0 .

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ? $\beta_{1}+\beta_{3} X_{2 i}$
2. How do we interpret β_{1} ? The effect of an additional unit of $X_{1 i}$, if $X_{2 i}$ is equal to 0 .
3. How do we interpret β_{2} ? The effect of an additional unit of $X_{2 i}$, if $X_{1 i}$ is equal to 0 .
4. How do we interpret $\beta_{1}+\beta_{3}$?

Interaction Terms (ii)

Now, let us extend the model to:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+e_{i}
$$

1. What is the "effect" of $X_{1 i}$ on Y_{i} ? $\beta_{1}+\beta_{3} X_{2 i}$
2. How do we interpret β_{1} ? The effect of an additional unit of $X_{1 i}$, if $X_{2 i}$ is equal to 0 .
3. How do we interpret β_{2} ? The effect of an additional unit of $X_{2 i}$, if $X_{1 i}$ is equal to 0 .
4. How do we interpret $\beta_{1}+\beta_{3}$? The effect of an additional unit of $X_{1 i}$, if $X_{2 i}$ is equal to 1 .

Rule of thumb: Always use partial derivatives to make sure that you are right!

Interactions with only dummy variables

- Take any two binary variables, for example: Studies at UC Berkeley or not $\left(\mathrm{UCB}_{i}\right)$, and is from California or not (Cali $)$).
- The regression with interactions looks like this:

$$
Y_{i}=\underbrace{\beta_{0}}_{17.77}+\underbrace{\beta_{1}}_{2.28} \text { UCB }_{i}+\underbrace{\beta_{2}}_{0.95} \mathrm{Cali}_{i}+\underbrace{\beta_{3}}_{-0.97} \text { UCB }_{i} \times \mathrm{Cali}_{i}
$$

- We can write this in a table, and get all group averages

$$
\text { Cali }=1 \quad \text { Cali }=0
$$

$$
\begin{array}{lll}
\mathrm{UCB}=1 & \beta_{0}+\beta_{1}+\beta_{2}+\beta_{3} & \beta_{0}+\beta_{1} \\
& =17.77+2.28+0.95-0.97 & =17.77+2.28 \\
\mathrm{UCB}=0 & \beta_{0}+\beta_{2} & \beta_{0} \\
& =17.77+0.95 & =17.77
\end{array}
$$

- Take differences between cells to get different effects!

